Cuando las matemáticas se explican mal

En la EGB nos podrían haber explicado mejor las matemáticas, me di cuenta de esto años después, en Bachillerato, y a las malas. Si no es tu caso, me alegro por ti; en el nuestro tuvimos profesores que no tenían claro lo que explicaban, no se trataba de saber mucho (es sólo la EGB) sino de tenerlo muy claro. En mi opinión, en matemáticas es preferible avanzar poco pero con firmeza a avanzar mucho sin solidificar las bases, lo que conduce más pronto que tarde al desmoronamiento de lo que creíamos saber.

A continuación, expondré cómo me parece que hubiera sido mejor que explicaran algunos aspectos. Si eres profesor, espero que te pueda servir mi opinión (puedes dejarme la tuya en los comentarios); si eres alumno de la educación obligatoria, tal vez esto puedo ayudarte a clarificar algunos conceptos.

Los miembros de una ecuación no “pasan” al otro lado

Recuerdo que el profesor usaba expresiones como:

  • x pasa a dividir (o a multiplicar) al otro lado.
  • Tal número pasa a restar (o a sumar) al otro lado.

Como ejemplo de los errores a los que puede conducir pensar así, veamos la ecuación de la división entera:

D = d*q + r

Si pensamos que D “pasa a dividir al otro lado”, como el lado izquierdo de la igualdad queda vacío, podemos creer que esto es correcto:

0 = (d*q + r) / D

Si nos hubieran enseñado que, como ambos lados de la ecuación son iguales, la igualdad se mantendrá si operamos igual en ambos lados, pensaremos que vamos a dividir a ambos lados por D, con lo que llegaremos a una igualdad correcta:

D/D = (d*q + r) / D  → 1 = (d*q + r) / D

Segmentar la resolución de una ecuación

Otra zancadilla en nuestro aprendizaje nos la daba un profesor que usaba el punto y coma “;” para separar cada paso que ejecutaba para resolver la ecuación. Arrastré la coletilla hasta que en el Bachillerato, un compañero me preguntó por qué usaba un punto y coma en vez del signo igual. Tal vez sería más pedagógico usar el símbolo “implica que”:

x2 -9 = 0 ; x2 = 9 ; x = √3; x = ±3

x2 -9 = 0 ⇒ x2 = 9 ⇒ x = √3 ⇒ x = ±3

Lo que implica la igualdad

Deberían habernos dejado bien claro, incluso diría que machacado, que el hecho de que los dos lados de la ecuación sean iguales implica que seguirán siéndolo si se realiza la misma operación en ambos lados: elevar al cuadrado, al cubo, raíz cuadrada a ambos lados, etc. Cuando llega el momento, no está de más explicar que operaciones como las raíces pueden tener la limitación x ≥ 0 cuando operamos ecuaciones que las contienen, por ejemplo:

Estas condiciones son frecuentes en matemáticas: aparecen en los logaritmos y, pasada la educación obligatoria, vuelven a aparecer en el cálculo de límites, en las integrales, etc.

La proporcionalidad

Acerca de las fracciones nos enseñaron prácticamente todo, pero viéndolo desde la distancia, me parece que se pasó a la ligera por el hecho de que el cociente entre dos magnitudes expresa cuánto de la magnitud del numerador corresponde a cada unidad de la magnitud del denominador. Después, en el Bachillerato, esto aparece de forma masiva en asignaturas como Química y Física:

  • F/m: La aceleración es la fuerza que actúa por unidad de masa.
  • F/q: La intensidad del campo eléctrico es la fuerza que actúa por unidad de carga eléctrica.
  • d = m/V: La densidad es la masa de un objeto por unidad de volumen.

En el cotidiano acto de la compra tenían nuestros profesores un buen ejemplo, si por ejemplo un cartel anuncia que la malla de 6 Kg de naranjas cuesta 3’84€ y queremos saber cuánto cuesta el kilogramo, tendremos que poner el precio en el numerador y el peso en el denominador, pues deseamos conocer el precio en función del peso.

En definitiva, creo que una mayor rigurosidad en la exposición de los conceptos básicos nos hubiera ayudado a aposentar algunos conceptos básicos en matemáticas; una asignatura difícil, incluso para enseñarla.

2 pensamientos en “Cuando las matemáticas se explican mal

  1. Muy cierto, lo de “pasar al otro lado” induce a errores del tipo 6=3x+2; 6/3=x+2; x=0. Lo del ; se puede admitir para separar los distintos pasos en la resolución de la ecuación. Lo más correcto sería la doble implicación

    • El error que comentas, además de ser debido a la confusión que genera el “pasar al otro lado”, como indicas, tal vez también es debido a no explicar claramente qué significa que una expresión algebraica es igual a otra, pues en el ejemplo que pones se esta cogiendo una parte (x) por el todo(x + 2)

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.