Preferencia de las operaciones según Casio

Por la preferencia de operadores, así resolvemos la siguiente operación:

O también:

Ahora bien, la Casio fx-83ES Plus opina diferente:

Casio Fx 82ES PLUS error por la preferencia de operaciones

En primer lugar calcula el paréntesis para, a continuación, multiplicarlo por el denominador, resultado que, finalmente, dividirá el numerador.

En cambio, curiosamente muestra el resultado correcto cuando expresamos la división como una fracción:

Si introducimos exactamente lo mismo que hemos visto en la primera imagen en la Casio fx-570SP X II, una calculadora de gama más alta, nos sigue mostrando el mismo resultado, 1, pero esta vez ella misma añade unos ilustrativos paréntesis que hacen el resultado correcto:

Casio fx 570SP X II

Si seguimos el camino que nos indica, es decir, si añadimos paréntesis, sí obtenemos el resultado esperado, en cualquiera de las dos calculadoras, por ejemplo:

En definitiva, el orden de los operadores conduce a la resolución que se ha descrito inicialmente. Ahora bien, en este tipo de operaciones, estas calculadoras no siguen la jerarquía matemáticamente correcta. De hecho, en el manual de la Casio fx-570SP II encontraremos el caso concreto del uso de paréntesis con omisión del signo de multiplicación, y en el de ambas la jerarquía de las operaciones.

Casio Fx 82ES PLUS operacion correcta

Aquí no hemos omitido el signo de multiplicación

Parece ser que, el acrónimo tan usado en informática: RTFM (Read The Fucking Manual) también aplica a ordenadores tan sencillos como una calculadora.

i elevado a i

Una serie de artículos acerca de la exponenciación con números complejos, que di por finalizada en su tercera entrega, y a los que el lector puede recurrir si no entiende algo de lo que en el presente artículo se explica, voy a ampliarla para el curioso caso de ii, y digo curioso pues el resultado es un número real.

Vimos que la generalización de la exponenciación, ab, sean a y b reales1 o complejos, es:

Exponenciación generalizada

En el presente caso, a = i, y si bien el logaritmo complejo existe, aplicando la fórmula de Euler, podremos obtener la forma exponencial para calcular fácilmente ii. En primer lugar, vamos a expresar i en forma polar para obtener dos datos que necesitaremos: el módulo y el argumento. El módulo, obviamente, será 1 y el argumento será π/2 radianes, pues i forma un ángulo recto con la parte real o eje de las ordenadas:

El número imaginario en el plano cartesiano complejo

Por lo tanto, i = 1π/2 en polar, mientras que en binómica es (0 +1i). De esta última, gracias a que conocemos tanto el módulo como el argumento, podemos pasar a la trigonométrica:

Expresión que se deduce por trigonometría:

forma trigonometrica del número complejo

Gracias a la fórmula de Euler donde x es el argumento:

Formula de EulerPodemos convertir, finalmente, la unidad imaginaria a la forma exponencial:

Por lo que:

Como i = √-1:

Y ya hemos calculado ii.

En rojo el número i y en azul r = ii en el plano complejo.


Si a ∈ ℝ, a > 0

Ecuación de la asíntota oblicua

Es frecuente que a los alumnos se les enseñe que, si una función tiene un asíntota oblicua que viene dada por y = ax + b, los términos a y b se calcularán a partir de dos fórmulas que deben memorizar:

término b

(1)

término a

(2)

Pero, ¿de dónde provienen? Si tenemos poca memoria y/o preferimos entender el porqué de las cosas, algo bastante conveniente en matemáticas, debemos tener en cuenta que, para una x infinitamente grande, por las propiedades de los límites, se cumplirá f(x) – y = 0:

ecuación asintota oblicua

(3)

Estas propiedades son debidas a que los límites cumplen con las condiciones de linealidad, vamos a aplicarlas paso a paso para ver cómo se obtiene el término b:

obtencion termino bAhora sólo resta aislarlo y obtendremos la fórmula inicial (1). En la ecuación (3), y dado que b no depende de x, podemos aislar a y obtendremos la fórmula (2).

 

Funciones

En azul la función f(x) = x²/(x+1) En rojo su asíntota oblicua y = x – 1

Cambiando un poco de tema, pero no demasiado, puede verse que si a = 0, entonces se trata de una asíntota horizontal, por lo que podemos ver las asíntotas horizontales como un caso particular de las oblicuas.

Generalización de los espacios vectoriales

El conjunto de los vectores libres del plano ℝ2 o del espacio ℝ3, es sólo uno del los muchos objetos matemáticos que pueden formar un espacio vectorial. Este concepto se puede abstraer para englobar no sólo vectores sino también otros objetos como polinomios, funciones o conjuntos de números. En este artículo expondré cómo se realiza esta generalización, en primer lugar para tenerlo yo claro, y en segundo lugar, para ayudar a otros; aunque para este segundo caso debo aclarar al lector que yo no soy matemático y por lo tanto sugiero contrastar lo que aquí expongo con fuentes acreditadas.

Vectores en el espacio

En color amarillo está representado el vector (3, 2, 1) y en violeta el (-1, 0, 2).

Los vectores, tanto en el plano como en el espacio, tienen dirección, sentido y módulo. Si lo pensamos, la abstracción del concepto ya empieza simplemente si nos desplazamos a ℝ4 , pues, ¿cómo representar en este espacio dichos valores? No podemos, resulta que fuera del plano y el espacio tridimensional donde nos introdujeron los vectores en el Bachillerato, el vector ya es una abstracción. La siguiente definición y propiedades nos permitirá ir más allá de ℝ3, e incluso de los vectores, con rigurosidad:

Un espacio vectorial es un conjunto no vacío V de objetos, llamados vectores, donde se definen las operaciones suma y multiplicación por escalares (número reales), sujetos a estos 10 axiomas:

  1. La suma de u y v, u + v, está en V.
  2. Conmutativa: u + v = v + u
  3. Asociativa de la suma: (u + v) + w = u + (v + w)
  4. Elemento neutro de la suma: u + 0 = u
  5. Elemento opuesto: Para cada u en V, existe un -u tal que u + (-u) = 0
  6. El múltiplo escalar de u por c, cu, está en V.
  7. Distributiva I: c(u + v) = cu + cv
  8. Distributiva II: (c + d)u = cu + du
  9. Asociativa del producto: c(du) = (cd)u
  10. Elemento neutro del producto: 1u = u

Estos axiomas deben cumplirse ∀ u, v, w ∈ V, ∀ c, d ∈ ℝ

A continuación, expondré un par de objetos para los que se cumplen todos estos axiomas; veremos también cómo se cumplen los fundamentales, pero no los diez, pues sería excesivamente largo.

Los polinomios

Para n ≥ 0, el conjunto Pn de grado n o menor consiste en todos los polinomios de la forma:

p(t) =  a0 + a1t + a2t + … + antn

Si tenemos otro polinomio:

q(t) =  b0 + b1t + b2t + … + bntn

p + q se define mediante:

(p + q)(t) = p(t) + q(t) = (a0 + b0) + (a1 + b1)t + … + (an + bn)tn

El múltiplo por un escalar, cp, es el polinomio definido así:

(cp)(t) = cp(t) = ca0 + (ca1)t + (ca2)t + … + (cantn)

Los axiomas 1 y 6 han sido satisfechos, ya que p + q y cp son polinomios de grado igual o menor que n. Los axiomas 2, 3 y del 7 al 10 son consecuencia de las propiedades de los números reales. El polinomio 0 actúa como elemento neutro de la suma (axioma 4), mientras que el elemento opuesto es (-1)p. Por lo tanto, Pn es un espacio vectorial.

Las funciones reales definidas en un intervalo

Sea V el conjunto de todas las funciones reales definidas en un conjunto D (ya sea un intervalo o todos los números reales), nos encontramos en un caso parecido al de los polinomios, pues si por ejemplo D = ℝ y tenemos la funciones:

f(t) = cos(t) – 2

g(t) = 1/(t2 + 1) + 7

Se cumple que:

(f + g)(t) = cos(t) + 1/(t2 + 1) + 5

(2g)(t) = 2/(t2 + 1) + 14

En este caso, el vector 0 es la función f(t) = 0 y (-1)f el elemento opuesto de f. Como el cumplimiento de los demás axiomas se deduce de las propiedades de los números reales, V es un espacio vectorial.

Intuyo que, en general, los objetos matemáticos que cumplen las condiciones de linealidad pueden constituir espacios vectoriales pues, por ejemplo, son espacios vectoriales el conjunto de las matrices reales de m filas y n columnas, el conjunto de las funciones derivables en un punto y el de las integrables en un intervalo.

Funciones de orden superior

Tanto en matemáticas como en informática, las funciones de orden superior son aquellas que cumplen, al menos, una de estas condiciones:

  1. Esperan como argumento/s una o más funciones.
  2. Devuelven una función como resultado.

Ejemplos en matemáticas son la derivada y la antiderivada o función primitiva.

operador diferencial

El operador diferencial es una función de orden superior

Antiderivada

La antiderivada de una función f es una función F tal que F’ = f

En informática son la esencia de los lenguajes funcionales, pero también aparecen en lenguajes de otros paradigmas. Este es un ejemplo en el lenguaje Scheme en el que la función (f x) recibe un argumento y devuelve una función:

(define (f x)
  (lambda (y) (+ x y)))
(display ((f 3) 7))

Puede ejecutarse aquí para ver el resultado.

Cuando nació Javascript, a algunos programadores les pareció un lenguaje orientado a objetos fallido1, sobretodo porque, por razones comerciales, se le puso un nombre que lo asocia con Java. Desconozco si su creador estuvo muy de acuerdo con ese nombre pues, tal y como se diseño este lenguaje, da bastante juego a la programación funcional. En el siguiente ejemplo, el método filter() es una función de orden superior, pues espera recibir una función como parámetro:

function isPrime(x){
  if (x === 2) {
     return true;
  }
  let test = x%2 !== 0;
  let i = 3;
  stop = Math.floor(Math.sqrt(x)); // Raíz entera de x
  while (test && i <= stop) {
	  test = x%i !== 0;
	  i = i + 2;
  }
  return test;
}

const numbers = [47, 139, 137, 213, 2, 3, 45, 1515];
const primeNumbers = numbers.filter(isPrime);
console.log(primeNumbers);

Lo que este programa hace es filtrar la formación de números naturales “numbers“, dejando sólo los que sean primos en “primeNumbers“. Cada elemento de “numbers” será evaluado por la función “isPrime” mediante la criba de Eratóstenes. El lector puede ejecutarlo accediendo a la consola del navegador pulsando F12 y modificar el valor de “numbers” con los números (o el número) que quiera saber si son primos o no.

Este tipo de funciones están en prácticamente todos los lenguajes modernos, incluso en los que no se tuvo en cuenta el paradigma funcional en el momento de su creación. Es el caso de PHP, donde podemos encontrar una gran cantidad de funciones que esperan otra función, como es el caso de, por ejemplo, preg_replace_callback()2:

$capitalice = function($coincidencia) {
    return strtoupper($coincidencia[1]);
};

echo preg_replace_callback('~-([a-z])~', $capitalice, 'hola-mundo');

Además de usar las implementadas en funciones y métodos propios del lenguaje, también podemos crear las nuestras, de forma parecida a un lenguaje completamente funcional. En Javascript, la Wikipedia nos ofrece el siguiente ejemplo:

const twice = (f, v) => f(f(v));
const add3 = v => v + 3;

console.log(twice(add3, 7));

Lo mismo es posible en PHP:

$twice = function($f, $v) {
    return $f($f($v));
};

$f = function($v) {
    return $v + 3;
};

echo($twice($f, 7));

La programación funcional pretende tratar la programación como la evaluación de funciones matemáticas, paradigma muy diferente a la programación imperativa, basada en estados y en instrucciones que lo cambian. Tal vez las características funcionales que tienen algunos lenguajes puedan ayudarnos a introducirnos en un paradigma, el funcional, que nos exige una forma muy distinta de enfocar los problemas.


 

1 Todavía hoy en día, y a pesar de los cambios que ha sufrido en los últimos ECMA, sigue despertando las críticas de los programadores que, debido a su nombre, esperan que se comporte como un lenguaje completamente orientado a objetos, como Java, y se dan de bruces contra la realidad.

2 El parámetro que recibe la función contenida en $capitalize son las coincidencias que encuentre la expresión regular.

Cuando las matemáticas se explican mal

En la EGB nos podrían haber explicado mejor las matemáticas, me di cuenta de esto años después, en Bachillerato, y a las malas. Si no es tu caso, me alegro por ti; en el nuestro tuvimos profesores que no tenían claro lo que explicaban, no se trataba de saber mucho (es sólo la EGB) sino de tenerlo muy claro. En mi opinión, en matemáticas es preferible avanzar poco pero con firmeza a avanzar mucho sin solidificar las bases, lo que conduce más pronto que tarde al desmoronamiento de lo que creíamos saber.

A continuación, expondré cómo me parece que hubiera sido mejor que explicaran algunos aspectos. Si eres profesor, espero que te pueda servir mi opinión (puedes dejarme la tuya en los comentarios); si eres alumno de la educación obligatoria, tal vez esto puedo ayudarte a clarificar algunos conceptos.

Los miembros de una ecuación no “pasan” al otro lado

Recuerdo que el profesor usaba expresiones como:

  • x pasa a dividir (o a multiplicar) al otro lado.
  • Tal número pasa a restar (o a sumar) al otro lado.

Como ejemplo de los errores a los que puede conducir pensar así, veamos la ecuación de la división entera:

D = d*q + r

Si pensamos que D “pasa a dividir al otro lado”, como el lado izquierdo de la igualdad queda vacío, podemos creer que esto es correcto:

0 = (d*q + r) / D

Si nos hubieran enseñado que, como ambos lados de la ecuación son iguales, la igualdad se mantendrá si operamos igual en ambos lados, pensaremos que vamos a dividir a ambos lados por D, con lo que llegaremos a una igualdad correcta:

D/D = (d*q + r) / D  → 1 = (d*q + r) / D

Segmentar la resolución de una ecuación

Otra zancadilla en nuestro aprendizaje nos la daba un profesor que usaba el punto y coma “;” para separar cada paso que ejecutaba para resolver la ecuación. Arrastré la coletilla hasta que en el Bachillerato, un compañero me preguntó por qué usaba un punto y coma en vez del signo igual. Tal vez sería más pedagógico usar el símbolo “implica que”:

x2 -9 = 0 ; x2 = 9 ; x = √3; x = ±3

x2 -9 = 0 ⇒ x2 = 9 ⇒ x = √3 ⇒ x = ±3

Lo que implica la igualdad

Deberían habernos dejado bien claro, incluso diría que machacado, que el hecho de que los dos lados de la ecuación sean iguales implica que seguirán siéndolo si se realiza la misma operación en ambos lados: elevar al cuadrado, al cubo, raíz cuadrada a ambos lados, etc. Cuando llega el momento, no está de más explicar que operaciones como las raíces pueden tener la limitación x ≥ 0 cuando operamos ecuaciones que las contienen, por ejemplo:

Estas condiciones son frecuentes en matemáticas: aparecen en los logaritmos y, pasada la educación obligatoria, vuelven a aparecer en el cálculo de límites, en las integrales, etc.

Potencia con exponente

En matemáticas se tiende a obviar los paréntesis que no son imprescindibles, esto nos puede inducir a creer que la siguiente igualdad es cierta, cuando no lo es:

En este caso, por la prioridad de los operadores, primero debe calcularse 34, 81, para finalmente operar 281. En cambio, mediante los paréntesis podemos indicar que la base no es 2 sino 23, es decir, la potencia de una potencia:

potencia correcta

La proporcionalidad

Acerca de las fracciones nos enseñaron prácticamente todo, pero viéndolo desde la distancia, me parece que se pasó a la ligera por el hecho de que el cociente entre dos magnitudes expresa cuánto de la magnitud del numerador corresponde a cada unidad de la magnitud del denominador. Después, en el Bachillerato, esto aparece de forma masiva en asignaturas como Química y Física:

  • F/m: La aceleración es la fuerza que actúa por unidad de masa.
  • F/q: La intensidad del campo eléctrico es la fuerza que actúa por unidad de carga eléctrica.
  • d = m/V: La densidad es la masa de un objeto por unidad de volumen.

En el cotidiano acto de la compra tenían nuestros profesores un buen ejemplo, si por ejemplo un cartel anuncia que la malla de 6 Kg de naranjas cuesta 3’84€ y queremos saber cuánto cuesta el kilogramo, tendremos que poner el precio en el numerador y el peso en el denominador, pues deseamos conocer el precio en función del peso.

Aunque el ejemplo de la compra pueda parecer muy básico, el mismo concepto, la proporcionalidad, permite hallar la solución a problemas aparentemente más complejos, como el siguiente que nos servirá a modo de ejemplo. Tenemos un tramo de fibra óptica de 300 metros por el que se desplaza un haz de luz (línea negra), “rebotando” por reflexión total interna.

fibra óptica

Esquema del tramo de fibra óptica

Si sólo sabemos el valor de ϴc como la luz no se desplaza en línea recta sino en zigzag, aparentemente no podemos calcular la distancia real que recorre la luz, pero gracias a la proporcionalidad directa y algo de trigonometría podemos encontrar solución.

trigonometria haz de luz

El seno de un ángulo es el cateto opuesto entre la hipotenusa

Vemos que existe una proporcionalidad directa entre X y L, pues sen(ϴc) es una constante. Por lo tanto, sea e la distancia real recorrida por luz, sabemos que la siguiente igualdad, que nos permite calcular la distancia realmente recorrida en zigzag, es cierta:

En definitiva, creo que una mayor rigurosidad en la exposición de los conceptos básicos nos hubiera ayudado a aposentar algunos conceptos básicos en matemáticas; una asignatura difícil, incluso para enseñarla.