Generalización de los espacios vectoriales

El conjunto de los vectores libres del plano ℝ2 o del espacio ℝ3, es sólo uno del los muchos objetos matemáticos que pueden formar un espacio vectorial. Este concepto se puede abstraer para englobar no sólo vectores sino también otros objetos como polinomios, funciones o conjuntos de números. En este artículo expondré cómo se realiza esta generalización, en primer lugar para tenerlo yo claro, y en segundo lugar, para ayudar a otros; aunque para este segundo caso debo aclarar al lector que yo no soy matemático y por lo tanto sugiero contrastar lo que aquí expongo con fuentes acreditadas.

Vectores en el espacio

En color amarillo está representado el vector (3, 2, 1) y en violeta el (-1, 0, 2).

Los vectores, tanto en el plano como en el espacio, tienen dirección, sentido y módulo. Si lo pensamos, la abstracción del concepto ya empieza simplemente si nos desplazamos a ℝ4 , pues, ¿cómo representar en este espacio dichos valores? No podemos, resulta que fuera del plano y el espacio tridimensional donde nos introdujeron los vectores en el Bachillerato, el vector ya es una abstracción. La siguiente definición y propiedades nos permitirá ir más allá de ℝ3, e incluso de los vectores, con rigurosidad:

Un espacio vectorial es un conjunto no vacío V de objetos, llamados vectores, donde se definen las operaciones suma y multiplicación por escalares (número reales), sujetos a estos 10 axiomas:

  1. La suma de u y v, u + v, está en V.
  2. Conmutativa: u + v = v + u
  3. Asociativa de la suma: (u + v) + w = u + (v + w)
  4. Elemento neutro de la suma: u + 0 = u
  5. Elemento opuesto: Para cada u en V, existe un -u tal que u + (-u) = 0
  6. El múltiplo escalar de u por c, cu, está en V.
  7. Distributiva I: c(u + v) = cu + cv
  8. Distributiva II: (c + d)u = cu + du
  9. Asociativa del producto: c(du) = (cd)u
  10. Elemento neutro del producto: 1u = u

Estos axiomas deben cumplirse ∀ u, v, w ∈ V, ∀ c, d ∈ ℝ

A continuación, expondré un par de objetos para los que se cumplen todos estos axiomas; veremos también cómo se cumplen los fundamentales, pero no los diez, pues sería excesivamente largo.

Los polinomios

Para n ≥ 0, el conjunto Pn de grado n o menor consiste en todos los polinomios de la forma:

p(t) =  a0 + a1t + a2t + … + antn

Si tenemos otro polinomio:

q(t) =  b0 + b1t + b2t + … + bntn

p + q se define mediante:

(p + q)(t) = p(t) + q(t) = (a0 + b0) + (a1 + b1)t + … + (an + bn)tn

El múltiplo por un escalar, cp, es el polinomio definido así:

(cp)(t) = cp(t) = ca0 + (ca1)t + (ca2)t + … + (cantn)

Los axiomas 1 y 6 han sido satisfechos, ya que p + q y cp son polinomios de grado igual o menor que n. Los axiomas 2, 3 y del 7 al 10 son consecuencia de las propiedades de los números reales. El polinomio 0 actúa como elemento neutro de la suma (axioma 4), mientras que el elemento opuesto es (-1)p. Por lo tanto, Pn es un espacio vectorial.

Las funciones reales definidas en un intervalo

Sea V el conjunto de todas las funciones reales definidas en un conjunto D (ya sea un intervalo o todos los números reales), nos encontramos en un caso parecido al de los polinomios, pues si por ejemplo D = ℝ y tenemos la funciones:

f(t) = cos(t) – 2

g(t) = 1/(t2 + 1) + 7

Se cumple que:

(f + g)(t) = cos(t) + 1/(t2 + 1) + 5

(2g)(t) = 2/(t2 + 1) + 14

En este caso, el vector 0 es la función f(t) = 0 y (-1)f el elemento opuesto de f. Como el cumplimiento de los demás axiomas se deduce de las propiedades de los números reales, V es un espacio vectorial.

Intuyo que, en general, los objetos matemáticos que cumplen las condiciones de linealidad pueden constituir espacios vectoriales pues, por ejemplo, son espacios vectoriales el conjunto de las matrices reales de m filas y n columnas, el conjunto de las funciones derivables en un punto y el de las integrables en un intervalo.

Funciones de orden superior

Tanto en matemáticas como en informática, las funciones de orden superior son aquellas que cumplen, al menos, una de estas condiciones:

  1. Esperan como argumento/s una o más funciones.
  2. Devuelven una función como resultado.

Ejemplos en matemáticas son la derivada y la antiderivada o función primitiva.

operador diferencial

El operador diferencial es una función de orden superior

Antiderivada

La antiderivada de una función f es una función F tal que F’ = f

En informática son la esencia de los lenguajes funcionales, pero también aparecen en lenguajes de otros paradigmas. Este es un ejemplo en el lenguaje Scheme en el que la función (f x) recibe un argumento y devuelve una función:

(define (f x)
  (lambda (y) (+ x y)))
(display ((f 3) 7))

Puede ejecutarse aquí para ver el resultado.

Cuando nació Javascript, a algunos programadores les pareció un lenguaje orientado a objetos fallido1, sobretodo porque, por razones comerciales, se le puso un nombre que lo asocia con Java. Desconozco si su creador estuvo muy de acuerdo con ese nombre pues, tal y como se diseño este lenguaje, da bastante juego a la programación funcional. En el siguiente ejemplo, el método filter() es una función de orden superior, pues espera recibir una función como parámetro:

function isPrime(x){
  if (x === 2) {
     return true;
  }
  let test = x%2 !== 0;
  let i = 3;
  stop = Math.floor(Math.sqrt(x)); // Raíz entera de x
  while (test && i <= stop) {
	  test = x%i !== 0;
	  i = i + 2;
  }
  return test;
}

const numbers = [47, 139, 137, 213, 2, 3, 45, 1515];
const primeNumbers = numbers.filter(isPrime);
console.log(primeNumbers);

Lo que este programa hace es filtrar la formación de números naturales “numbers“, dejando sólo los que sean primos en “primeNumbers“. Cada elemento de “numbers” será evaluado por la función “isPrime” mediante la criba de Eratóstenes. El lector puede ejecutarlo accediendo a la consola del navegador pulsando F12 y modificar el valor de “numbers” con los números (o el número) que quiera saber si son primos o no.

Este tipo de funciones están en prácticamente todos los lenguajes modernos, incluso en los que no se tuvo en cuenta el paradigma funcional en el momento de su creación. Es el caso de PHP, donde podemos encontrar una gran cantidad de funciones que esperan otra función, como es el caso de, por ejemplo, preg_replace_callback()2:

$capitalice = function($coincidencia) {
    return strtoupper($coincidencia[1]);
};

echo preg_replace_callback('~-([a-z])~', $capitalice, 'hola-mundo');

Además de usar las implementadas en funciones y métodos propios del lenguaje, también podemos crear las nuestras, de forma parecida a un lenguaje completamente funcional. En Javascript, la Wikipedia nos ofrece el siguiente ejemplo:

const twice = (f, v) => f(f(v));
const add3 = v => v + 3;

console.log(twice(add3, 7));

Lo mismo es posible en PHP:

$twice = function($f, $v) {
    return $f($f($v));
};

$f = function($v) {
    return $v + 3;
};

echo($twice($f, 7));

La programación funcional pretende tratar la programación como la evaluación de funciones matemáticas, paradigma muy diferente a la programación imperativa, basada en estados y en instrucciones que lo cambian. Tal vez las características funcionales que tienen algunos lenguajes puedan ayudarnos a introducirnos en un paradigma, el funcional, que nos exige una forma muy distinta de enfocar los problemas.


 

1 Todavía hoy en día, y a pesar de los cambios que ha sufrido en los últimos ECMA, sigue despertando las críticas de los programadores que, debido a su nombre, esperan que se comporte como un lenguaje completamente orientado a objetos, como Java, y se dan de bruces contra la realidad.

2 El parámetro que recibe la función contenida en $capitalize son las coincidencias que encuentre la expresión regular.

Cómo intercambiar el valor de dos variables enteras sin una intermedia

Cómo intercambiar el valor de dos variables enteras sin una intermedia es, en mi opinión, una mera curiosidad. Ahora bien, parece ser que en algunas entrevistas de trabajo aparece esta pregunta. Cuando se me ha pedido colaborar en el proceso de selección de un futuro compañero, no se me ha ocurrido incluir semejante pregunta en la prueba, pues no creo que esta sirva para apreciar la calidad de un programador. No obstante, si el presente artículo, además de presentar una anécdota, le sirve a alguien a superar una prueba, será un plus.

A continuación, voy a exponer dos métodos que, al usar Javascript para su implementación, el lector podrá ejecutarlos fácilmente presionando F12 para acceder a la consola.

Método matemático

Fácilmente lo podemos deducir con papel y lápiz:

var a = 3;
var b = 2;

a = a + b;
b = a - b; // Con el paso anterior y el actual es b = a + b - b
a = a - b; // a = a + b - a
console.log(a);
console.log(b);

Este método tiene una limitación con números muy grandes en los lenguajes que no manejan por si mismos el desbordamiento de enteros, que no es el caso de Javascript.

Método informático

Este es el mejor, consiste en usar el operador a nivel de bits XOR que, como se explica en el link, devuelve 1 si y solo si x e y son diferentes, mientras que en caso contrario retorna 0.

var x = 10;
var y = 3;

x = x^y;
y = x^y;
x = x^y;

console.log(x);
console.log(y);

Esta es la tabla de la verdad con los valores iniciales 10 y 3 para x e y, respectivamente:
Cómo intercambiar dos variables sin temporalAfirmé que es el mejor debido a que funcionará sin problemas en cualquier lenguaje, la única condición es que disponga de operadores a nivel de bits, algo que prácticamente todos cumplen.

Cuando las matemáticas se explican mal

En la EGB nos podrían haber explicado mejor las matemáticas, me di cuenta de esto años después, en Bachillerato, y a las malas. Si no es tu caso, me alegro por ti; en el nuestro tuvimos profesores que no tenían claro lo que explicaban, no se trataba de saber mucho (es sólo la EGB) sino de tenerlo muy claro. En mi opinión, en matemáticas es preferible avanzar poco pero con firmeza a avanzar mucho sin solidificar las bases, lo que conduce más pronto que tarde al desmoronamiento de lo que creíamos saber.

A continuación, expondré cómo me parece que hubiera sido mejor que explicaran algunos aspectos. Si eres profesor, espero que te pueda servir mi opinión (puedes dejarme la tuya en los comentarios); si eres alumno de la educación obligatoria, tal vez esto puedo ayudarte a clarificar algunos conceptos.

Los miembros de una ecuación no “pasan” al otro lado

Recuerdo que el profesor usaba expresiones como:

  • x pasa a dividir (o a multiplicar) al otro lado.
  • Tal número pasa a restar (o a sumar) al otro lado.

Como ejemplo de los errores a los que puede conducir pensar así, veamos la ecuación de la división entera:

D = d*q + r

Si pensamos que D “pasa a dividir al otro lado”, como el lado izquierdo de la igualdad queda vacío, podemos creer que esto es correcto:

0 = (d*q + r) / D

Si nos hubieran enseñado que, como ambos lados de la ecuación son iguales, la igualdad se mantendrá si operamos igual en ambos lados, pensaremos que vamos a dividir a ambos lados por D, con lo que llegaremos a una igualdad correcta:

D/D = (d*q + r) / D  → 1 = (d*q + r) / D

Segmentar la resolución de una ecuación

Otra zancadilla en nuestro aprendizaje nos la daba un profesor que usaba el punto y coma “;” para separar cada paso que ejecutaba para resolver la ecuación. Arrastré la coletilla hasta que en el Bachillerato, un compañero me preguntó por qué usaba un punto y coma en vez del signo igual. Tal vez sería más pedagógico usar el símbolo “implica que”:

x2 -9 = 0 ; x2 = 9 ; x = √3; x = ±3

x2 -9 = 0 ⇒ x2 = 9 ⇒ x = √3 ⇒ x = ±3

Lo que implica la igualdad

Deberían habernos dejado bien claro, incluso diría que machacado, que el hecho de que los dos lados de la ecuación sean iguales implica que seguirán siéndolo si se realiza la misma operación en ambos lados: elevar al cuadrado, al cubo, raíz cuadrada a ambos lados, etc. Cuando llega el momento, no está de más explicar que operaciones como las raíces pueden tener la limitación x ≥ 0 cuando operamos ecuaciones que las contienen, por ejemplo:

Estas condiciones son frecuentes en matemáticas: aparecen en los logaritmos y, pasada la educación obligatoria, vuelven a aparecer en el cálculo de límites, en las integrales, etc.

Potencia con exponente

En matemáticas se tiende a obviar los paréntesis que no son imprescindibles, esto nos puede inducir a creer que la siguiente igualdad es cierta, cuando no lo es:

En este caso, por la prioridad de los operadores, primero debe calcularse 34, 81, para finalmente operar 281. En cambio, mediante los paréntesis podemos indicar que la base no es 2 sino 23, es decir, la potencia de una potencia:

potencia correcta

La proporcionalidad

Acerca de las fracciones nos enseñaron prácticamente todo, pero viéndolo desde la distancia, me parece que se pasó a la ligera por el hecho de que el cociente entre dos magnitudes expresa cuánto de la magnitud del numerador corresponde a cada unidad de la magnitud del denominador. Después, en el Bachillerato, esto aparece de forma masiva en asignaturas como Química y Física:

  • F/m: La aceleración es la fuerza que actúa por unidad de masa.
  • F/q: La intensidad del campo eléctrico es la fuerza que actúa por unidad de carga eléctrica.
  • d = m/V: La densidad es la masa de un objeto por unidad de volumen.

En el cotidiano acto de la compra tenían nuestros profesores un buen ejemplo, si por ejemplo un cartel anuncia que la malla de 6 Kg de naranjas cuesta 3’84€ y queremos saber cuánto cuesta el kilogramo, tendremos que poner el precio en el numerador y el peso en el denominador, pues deseamos conocer el precio en función del peso.

Aunque el ejemplo de la compra pueda parecer muy básico, el mismo concepto, la proporcionalidad, permite hallar la solución a problemas aparentemente más complejos, como el siguiente que nos servirá a modo de ejemplo. Tenemos un tramo de fibra óptica de 300 metros por el que se desplaza un haz de luz (línea negra), “rebotando” por reflexión total interna.

fibra óptica

Esquema del tramo de fibra óptica

Si sólo sabemos el valor de ϴc como la luz no se desplaza en línea recta sino en zigzag, aparentemente no podemos calcular la distancia real que recorre la luz, pero gracias a la proporcionalidad directa y algo de trigonometría podemos encontrar solución.

trigonometria haz de luz

El seno de un ángulo es el cateto opuesto entre la hipotenusa

Vemos que existe una proporcionalidad directa entre X y L, pues sen(ϴc) es una constante. Por lo tanto, sea e la distancia real recorrida por luz, sabemos que la siguiente igualdad, que nos permite calcular la distancia realmente recorrida en zigzag, es cierta:

En definitiva, creo que una mayor rigurosidad en la exposición de los conceptos básicos nos hubiera ayudado a aposentar algunos conceptos básicos en matemáticas; una asignatura difícil, incluso para enseñarla.